
PMM U.s.s.R.,vol.52,No.4,pp.461-466,lg88 
Printed in Great Britain 

ocX?l-8928/88 $lO.OO+O.OO 

01989 Pergamon Fress plc 

CONICAL ROTATIONAL FLOW INDUCED BY TANGENTIAL STRESSES 
ON FREE PLANE SURFACE* 

V.V. NIKULIN 

An exact formulation is used to solve the problem of the effect of 
rotating tangential stresses of prescribed form, exerted on a free plane 
surface of a viscous fluid. The qualitative structure of the flow which 
appears within the fluid is studied. The use of the results to calculate 
the upwelling caused by hurricanes outside the zone of the strongest 
winds, yields real numerical values. The motion of the fluid studied 
here refers to the class of selfsimilar conical flows, various types of 
which were studied in /l-7/. 

1. Formulation of the problem. We consider a half-space filled with a viscous in- 
compressible fluid bounded by a horizontal free surface. There is no force of gravity. We 
introduce a spherical coordinate system R,8,cp with origin on the free surface. The polar 
axis 8 =0 is perpendicular to the surface and directed towards the fluid. Tangential stresses 
are specified on the free surface. They have a rotational component Z, only, which varies 
according to a prescribed law r = pc2iR2; p is the density of the fluid and c is a constant. 
The flow is stationary and rotationally symmetrical; UL, w, lJ are the velocity components 
corresponding to R,tI,cp. The characteristic parameters of the problem are the kinematic 
velocity of the fluid Y, and the constant c, and they are of the same dimensions. Analysis 
using the theory of similitude /8/ shows that the problem is selfsimilar, and its solution can 
be sought in the form 

(z = cos 8, r = R sin 8) 

The equation of continuity yields J(I) = F' (s)sin8. After subsituting (1.1) and elimin- 
ating J(x), the Navier-Stokes equations reduce to the form /4/ 

F*"(l- ra)-4xF"'+ 2kFF"'+ GkF'F"=- $$. (1.2) 

8" (1 - 2) + 2kFQ’ = 0 
-2n = 2kFZ + 2kW + [2k (FF” + F’*) + F”’ (1 - x2) - 

2F"xl (1 - x2); k = c*/(2v*) 

Here k is a dimensionless parameter of the problem, and the function n(z) is connected 
with the pressure by the relation P/p = c*n(x)/r2 + R;B is a constant. The first equation of 
(1.2) is obtained after eliminating the pressure. 

On the free surface (5 = O), are formulate the conditions for zero leakage and set the 
tangential stresses. We require that the vertical and rotational velocity components be 
bounded on the axis of symmetry, and that there should be no sources or sinks. As a result 
we obtain 

F (0) = F” (0) = 0, P (0) = -1 (1.3) 
F’ (1) < 00, F (1) = Q (1) = 0 (1.4) 

It should be noted that when conditions (1.4) hold, the vertical accelerations are also 
bounded as x-i. 

Thus we have reduced the problem in question to that of solving the system of first two 
equations of (1.2) with boundary conditions (1.3), (1.4). We can transform this system to a 
more convenient form /4/. Let us integrate the first equation three times. This yields 

(l-xa)Ff+2xF+kF~=-k~Cx~dx~~+So+S,x+&x” 
; 0 0 

(1.5) 
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Using (1.3) we obtain from (1.5) 

We transform the expression for Ss, using the method employed in /9/ to study the 
turbulent jets. we multiply the first equation of (1.2) by (l-~xz) and integrate it once. 
This yields 

(1 - x2)2 F"' + k (1 - x2) [2Ff2 + 2FF”I + 4kxFF’ - 2kFa = -2kQ’ + s, f(1.6) 

The boundedness of F' (1) implies that (1 -x) F”+O, (1 - x)~F”‘+O as z+ 1 (otherwise 
the functions F" and (1 -x) F”’ cannot be integrated when x = 1). Considering (1.6) at the 
points I= 1 and 0 and taking into account (1.3) and (1.4), we obtain 

S, = 0, F”’ (0) + 2kF’* (0) + 2kW (0) = 0 

In this case the expression for S, will take the form S, = F' (0)-kP(0). Transforming 
the triple integral on the right-hand side of (1.5) into the single integral /4/ and sub- 
stituting the expression for S,,S,,S,, we reduce (1.5) to the form 

(1 -x2) F’ + 2xF + kP= 

-k 
x 2(r-t)(i--zzf)Q*dt 
s (1 - t*)a + (1 + x") F’(0) 
0 

From (1.7) and (1.4) we obtain, as x+ 1, 

F’(O)=k{$+ 
0 

Let us substitute this relation into (1.7) and make the substitution F(x) =(I 
Then (1.7) and the second equation of (1.2) will finally yield the system 

1' + f* = k2G (x)/(1 - x”)2, k = cz/(2vz) 

i-r Jr 2&Y = 0 

x-(1 _I- t’)wdt 
G (x) = (I - Ir)’ 1’ (I_ p), + (1 + 4 s’ -$$- 

0 x 

We solve Eqs.(l.9) in the segment IO, 11, with boundary conditions 

f (0) = 0, Q' (0) = -1,B (1) = 0 

11.7) 

(1.8) 

x2) f (x)/k. 

0.9) 

(1.10) 

In the present paper we prove the existence of solutions of system (1.9) with conditions 
(1.10) in the class of functions continuous in the segment [O, Il. We study the quantitative 
structure of the solutions. We shall be able to confirm, by direct verification, that the 
function F(x) satisfies conditions (1.3) and (1.4). 

2. The structure of the solutions. anma 1. Q(x) is a monotonically decreasing 

function, P (I)> 0. 

Proof. Integrating the second equation of (1.9) we obtain 

Q’(z)=-EZ(O,x)<O, E@,x)=exp(-p-h) 

Then, taking into account (1.10) we find that 82 0. 

Lemma 2. The following relations hold: 

G (x) > 0, G (O)> 0, G' (0) = G' (1) = 0, G"' (x) > 0 

Proof. The inequality G(X)> 0 follows directly from the expression for G(x). By 
virtue of Lemma 1, Q (x) f 0. Then G (0) > 0. Relations G'(O)= G'(i)= 0 can be confirmed 
by differentiating G(z), taking the condition B(l)= 0 into account. Since G"'(s)= -46262’1 
(1 -x2), by virtue of Lemma 1 we have G"'>O. 

Corollary 1. The inequality f(z)> 0 holds. 

Proof. Multiplying the first equation of (1.9) by an integrating factor and integrating, 
we obtain 
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Since G(x)> 0 (Lemma 2), we have f(s)> 0. 

Corollary 2. The following inequalities hold in the interval O<x<l: 

Q" > 0, Q (0) < 1, y (x) < 61 (x) < Q (0) (1 - r) 

Y(x)= 
Q(O)- I, U<s<Q(U) 

0, Q(O)<s<l 

Proof. From the proof of Corollary 1 and Lemma 1 it follows that f(x)> 0, 8’ < 0 in 
the interval O<x<l. Then the second equation of (1.9) will yield Q”>O. The remaining 
inequalities follow from the last inequality, boundary conditions (1.10) and Lemma 1. 

Lemma 3. The function G (r) satisfies the inequality 

G (0) (1 - x)” Q G (I) < W (0) (1 - x))’ 

Proof. Since 51 (I)< P (O)(i -5) (Corollary 2), therefore 

x (1 +t~)W(O)dt W<kz)aS (l+t)z < W(O)(l -x)* 
0 x 

(the following inequalities are used: (I$ t’)< (1 + t)” for t> 0, (1 i- x*)<(l + t)” for 
t > 5 2 0). To prove the left inequality, we introduce the function H (x) = G (x) - G (0) (1 - 
x)2. Taking into account Lemma 2 we obtain 

H (0) = H (1) = 0, H’ (0) > 0, H’ (1) = 0, H"' (x) > 0 

The function H" should, by virtue of the conditions given, be first negative, and then 
positive. Then from a graphical construction we find, taking the boundary conditions for H 
and H' into account, that H>O. 

Corollary 3. The following inequality holds: 

G (I) > Bs (0) (1 - x)*/l2 

Proof. Taking into account Corollary 2, we obtain 

The latter, together with Lemma 3, proves the following assertion: 

Lemma 4. The function f (4 satisfies the inequalities 0 < f (x)< k%. 

Proof. From the first equation of (1.9), Lemma 3 and Corollary 2 it follows that f'(x)< 
kW (0) < k2, and this yields f(x)< k2x. The inequality f(x)> 0 was proved in Corollary 1. 

Using the above assertions we find the direction of the fluid flow near the axis of 
symmetry and the free surface, and study the asymptotic behaviour (as k-t M) ofthe solutions. 

From the definition of radial velocity it follows that 

vuRIc* = (1 - 2") f’ik - &f/k = X-G (x)/(1 - I’) - 
(1 - x2) fVk - 2xf/k 

Then vuRIc* + kG (0) > 0 as x+ 0, since f (0) = O), vuRi?+ 2fik < 0 as x-+l'(byvirtueof 
Lemmas2 and4). Thusthe fluidflowsaway fromthecentre ofrotationalong the free surface, and 
towards the free surface near the axis of symmetry. 

In the course of investigating the asymptotic properties of solutions we shall show that 
a boundary layer is formed near the free surface as k-m, and we shall obtain estimates 
for thevaluesof the functions. 

Lemma 5. The following inequality holds: 

B (0) > 1/(4k)“* for k>l 

Proof. The proof of Lemma 4 yields j< kV(O)x. Then 

P(O)= iEB(O, t)dt> jexp(-kW(O)t*)dt 
i 0 
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or z >: (d’4:2’;2) k”wE’,z (z), where z = A62 (0), erf is the error integral. Graphical construction 
shows that the inequality holds for all z> z* where z* is the solution of the equation 
z* = (n',d;T,*) k',* erf','* (z*). The latter has a unique solution by virtue of the monotonic decrease 
in the value of the derivative of the right-hand side in z** We can establish by differen- 
tiating that k (z*), and hence z* (k) are monotonically increasing functions. Direct com- 
putation can confirm that z,(i)> I'?, therefore 

z* (k) > (n'~JZ?) k’is erf’/x (I/*) > k’lz:2 when k ;.. 1 

Since z> z*, therefore z > k’Jv’2 when k>l and the assertion of the lemma follows. 

Below we shall show that a boundary layer forms on the free surface as k-t ‘Y;, whose 

thickness decreases at least as fast as i/k'/*. 

Taking into account Corollary 3 and Lemma 5, we can write for k>l 

.f’ (x) > X2 - f”, x = k’W(81/@ 

We introduce the function cp (x) as a solution of the equation 

cy' = x2 - 'p2, 'p (0) = 0 

It has been shown /4, 5/ that 

f>cp (2.1) 

and 'P (5) is a monotonically increasing function. From the equation for, cp we find that 

'p' <x2, cp <x2x, hence 

'p' > X2 -m%+ /2.2) 

Let us write 6 = ll(l/%) = 8l/ak’Jh. Then the following relations fdllow for t < 6 from 

(2.2) : qJ’ > x2/2, cp > (xV2) I. By virtue of the monotonic increase in q(x) and the inequality 

(2.11, we have 

f (X) > ./(21/2) for X>& (2.3) 

Repeated integration of the second equation of (1.9) from 6 to x> 6 and substitutionof 

(2.3) into it yields 

52 (x) = - Q (6) 5 E2 (6, t) dt < - 252’ (6) l/e 65 (x), (2.4) 

Z(x) = exp (- (1;) x6-‘) - exp (- (l/J 6-1) 

According to Corollary 2, Q"> 0, hence -Q'(6)< 52 (0)/S. This, together with (2.4)) 

yields 
52 (x)/Q (0) < 2l/e5 (x) 

The last inequality establishes the existence of a boundary layer whose thickness tends 
to zero at least as fast as 6 N llk'l* N (v/c)% 

The lower bound was obtained for Q (0) in Lemma 5. Let us find the upper bound. Since 

Q"> 0 (Corollary 21, it follows that -Q'(6)< -Q'(O) = 1 (condition (1.10)). Taking this 
into account we obtain, from (2.4), 

Q (6) < 2s (2.5) 
Since 8" > 0, therefore D (O)<sZ (6) f 6. This, together with (2.5), yields Q (0) ( 

36 = 24v/Qlk’Jd. 

3. Existence of solutions. Let C IO, 11 be a space of functions continuous in the 

segment 0 <x<l, with the metric p(f, g) = max If(z)- g(x) 1, We know that C [O, 11 is a 
complex normed (and hence locally convex) space. Therefore, we can use a corollary from the 

Schauder fixed point theorem to prove the existence.of solutions. 

Theorem. System (1.9) with boundary conditions (1.10)‘ has at least one fixed point on 
the segment IO, 11. 

Proof. Let D be a set of functions fE C [O, 11, satisfying the inequalities 0 < f (I) Q 
k2x. It is clear that D is a closed convex set. Let us introduce the mapping Uf = g: 

g’=k2 (, _+ 
------p, g(O)=0 

= (l+ta)P”d! 
G (x) = (1 - qz s (I _ t’)’ + (1 + x2) ( ggz- 

0 .z 

(3.1) 

We find the function Q(s) from the relation 

S2 (x) = f E2 (0, t) dt 
x 

(3.2) 
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With hl (x) thus defined, we find that the second equation of (1.9) and boundary con- 
ditions (1.10) are all satisfied. 

According to (3.2) Vf= D, and the inequality D (.z)<((1 -x) holds. Then 0 < G (5) < 
(1 - x)2 (Lemma 3) follows from the expression for G(x), and 'g(s) satisfies the conditions 
of Lemma 4. Thus VfE D and g = Uf and the following inequality holds: 

0 .< g < k2s (3.3) 
From (3.3) and the inequality G (x) < (1 - x)~ it follows that problem (3.1) has a unique 

solution continuous on IO, 11. Therefore, taking into account (3.3) we have gE D, i.e. 
U(D)cD. 

The mapping U is continuous, since Q (r) can be expressed analytically in terms of f, 

G (x) in terms of 62 (x), and g(x) as a solution of (3.1) depends continuously on G (5). The 
precompactness of U(D) in C [O, 11 can be proved using Arzelh's theorem /lo/. The uniform 
boundedness of U(D) follows from (3.3). From (3.1), (3.3) and the inequality on G (x) 
there follows the uniform boundedness of g'(z). From this it follows that the set U(D) is 
equicontinuous. 

Thus the mapping U and the set D satisfy the conditions of the corollary of the Schauder 
theorem, and this implies that a fixed point f of the mapping U exists. 

4. The results obained above can be used to study the flow which occurs in a fluid in the 
case when a tornado-like vortex exists above its surface /U-14/ (examples of such vortices 
include hurricanes, storms/ll, 12/and their experimental laboratory models /13, 14/). The 
rotational velocity component outside the nucleus of the vortex (outside the zone of strongest 
winds /ll/) can be approximately described by the relation v = Air, A is a constant and r is 
the distance along the axis of rotation. If the flow is turbulent, then the magnitude of the 
tangential stress on the subjacent surface in the azimuthal direction is given by the relation 
/15, 16/ r = cIp1v2, c1 is a constant and p, is the air density. Then we have 7 Iz pc+=, c2 = 

CIPIA% for the region outside the nucleus (within the zones B and C, using the terminology 
of /17/j. Thus the solutions in question can only be used in the region outside the nucleus 
of the vortex. Any distortions of the free surface are neglected. For example, in the case 
of hurricanes the maximum distortion does not exceed lm, which is much smaller than all the 
characteristic dimensions and does not even exceed the wave height. We note that since a 
radial flow exists in the boundary layer of the air vortex, radial stresses may appear at the 
surface of the fluid, not compensated by the distortion of the free surface. The above effects 
are neglected in this paper. 

Comparing the inertia and Coriolis forces we find that when the rate of fluid flow is 
1 m/set, the inertia forces are greater than the Coriolis forces at distances of up to 20 km 
from the centre. Thus in the case of tornados or laboratory vortices, the contribution of 
the inertial mechanism discussed here towards the appearance of motion of the fluid will be 
dominant, and in the case of hurricanes it may be noticeable. 

In order to obtain an estimate of the effect of the inertial mechanism, we computed the 
flow induced by a vortex with parameters close to those of a hurricane of medium strength. 
The method of successive approximations /4/ was used. We put k= 1 and 5,(the turbulent 
Reynolds number c/v= 1.4 and 3.2; this order of magnitude is normally used in computing flows 
belongin 

9 
to the class in question /4, 9/), c,= 10-a /16/, A =ia* m2/sec, PI= 1kg/m3, and 

p = 103 m /sec. Then e= 103 m2/sec. The value of A was calculated for a hurricane of medium 
strength /ll/, @o=2'X.104 m is the radius of the strongest winds and vO= SOm/sec is the velocity 
at r = rO). 

This yields the following result. If k= 5, R=2x104 and 2~10~ and the depth is h= 100m, 
then w=. 0.03 and 1, 3x10-3cm/sec. When h=lOS m, we have ~~0.3 and 1.3X10-2 cm/set. At the 
surface of the fluid, for the same k and R, we have ~~10 and 2 cm/set, uz6 and 1.3 cm/set. 

The corresponding values for k=l are approximately 4 times smaller for w and u, and 
1.5 times smaller for c. 

The value of u: at R'= 2x,104m and h= 100m is of nearly the same order as the vertical 
velocity calculated /17/ for zone B, and at A = 10'm for zone C. Solving for w at h = IO3 m 
we find that the meridional circulation caused by the vortex extends to considerable depth and 
is not limited to the upper layer. This agrees with the mesurements carried out in the wake 
of a tropical cyclone when changes in temperature of the ocean deviating from the normal 
values were observed at depths of at least lo3 m /18/. 

Thus, using the exact formulation we have studied a vertical flow initiated by rotational 
tangential stresses on a free surface of a viscous fluid. In calculating the upwelling caused 
by the hurricane outside the zone of strongest winds, we obtained real numerical values. Two 
phenomenological parameters (cl and k) were used in carrying out the computations. 

REFERENCES 

1. LANDAU L.D., On a new exact solution of the Navier-Stokes equations. Dokl. Akad. Nauk SSSR, 
43, 1944. 



2. SQUIRE H.B., The round laminar jet, Quart. J. Mech. Appl. Math. 4, 3, 1951. 

3. GOL'DSHTIK M.A., A paradoxical solution of the Navier-Stokes equations. PMM, 24, 4, 1960. 

4. SERRIN J., The swirling vortex, Phil. Trans. Roy. Sot. London. Ser. A. 271, 1214, 1972. 

5. NIKULIN V.V., Interaction between a linear vortex and a free surface. Dynamics of inhomo- 
geneous liquid (dynamics of continua). Novosibirsk, Izd-e In-ta gidrodinamiki SO Akad. 
Nauk SSSR, 42, 1979. 

6. YIH C.-S., WU F., GARG A.K. and LEIBOVICH S., Conical vortices: A class of exact solutions 

of Navier-Stokes equations, Phys. Fluids. 25, 12, 1982. 

7. SAPRONOV YU.T., On the possible structure of the circulation of surface layers of the 

ocean initiated by the tropical cyclone "Typhoon-75". Leningrad, Gidrometeoizdat, 2, 

1978. 

8. SEDOV L.I., Similarity and Dimensionality Methods in Mechanics. Nauka, Moscow, 1977. 

9. GOL'DSHTIK M.A., Vortex Flows. Nauka, NOvosibirsk, 1981. 

10. EDWARDS R.E., Functional Analysis. Halt, Rinehart & Winson, N.Y. and London, 1965. 

11. SHEA D.J. and GRAY W.M., The hurricane's inner core region: Symmetric and asymmetric 

structure, J. Atmosph. Sci. 30, 8, 1973. 

1_2. HOECKER W.H., Wind speed and air flow patterns in the Dallas tornado of 2 April, 1957, 

Mon. Weather Rev. 88, 5, 1960. 

13. NIKULIN V.V., Investigation of a tornado-like vortex with solid boundaries. Zh. Prikl. 

Mat. Tekh. Fiz. 1, 1980. 

14. ANISIMOVA E-P., BELOV YU.N., SPERANSKAYA A.A. and SHANDIN V-S., A model of an atmospheric 

vortex. Izv. Akad. Nauk SSSR, Fiz. Atmosfery i Okeana, 17, 7, 1981. 

15. ROTT N. and LEWELLEN W.S., Boundary layer and their interaction in rotating flows, Progress 

in Aeronautical Sciences. N.Y.: Pergamon Press, 7, 1966. 

16. KHAIN A.P., Mathematical Modelling of Tropical Cyclones. Gidrometeoizdat, 1984. 

17. SUTYRIN G.G., KHAIN A.P. and AGRENICH E.A., Interaction between the boundary layers of 

the ocean and atmosphere in a tropical cyclone. Meteorologiya i Gidrologiya, 2, 1979. 

18. TIJNEGOLOVETS V.P., Transformation of the ocean's temperature field after the passage ofa 

tropical cyclone (using Typhoon Tess (1975) as an example). Meteorologiya i Cidrologiya, 

12, 1976. 

Translated by L.K. 

PMM U.S.S.R.,Vo1.52,No.4,pp.466-473,1980 0021~8928/88 $lO.OO+O.OO 

Printed in Great Britain 01989 Pergamon Press plc 

THE-FLOW OF LIQUID DOWN AN INCLINED PLANE AT HIGH REYNOLDS NUMBERS* 

A.A. MAKHMUDOV and E.D. TERENT'YEV 

The stability of the flow of a layer of incompressible liquid with a free 

surface down an inclined plane under the force of gravity is investigated 

for the case of large Reynolds and Froude numbers. The amplitudes of the 
perturbations which lead to a non-linear problem are found. Problems 
with initial data are formulated, as well as the boundary value problems 
with conditions on a moving wall. It is shown that four characteristic 

zones appear in the field of flow in a transverse direction, changing 
successively from one to the next. It is noted that the proposed scheme 
enables one to study detached flows with recirculation zones. The scheme 
constructed here resembles in many bays the pattern of flow past a plate 

on which a boundary layer is developed with selfinduced pressure /l-4/. 

1. Let a layer of incompressible viscous liquid flow down an inclined plane, making an 
angle 8 with the horizontal, under the force of gravity directed vertically downwards. We 
shall assume that the unperturbed motion is steady-state motion, with velocity parallel to 
the inclined plane. We shall choose, as dimensional quantities, the parameters of the 
unperturbed motion: the velocity of the free boundary U,, the height of the liquid layer ff, 
and the density of the liquid pO. Using them we introduce dimensionless dependent and inde- 
pendent variables. We shall use a Cartesian system of coordinates with the x' axis directed 
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